
1

The Geocode Service Software

1 June 2008
(Revised 30 November 2008)

This document describes installation and operation of the geocode service software. It
discusses the contents of the distribution, other software needed, how to install, how the
software works, and the apis of the service request and response.

Contents

The Geocode Service Software ..........................................................1

Contents ............................................................................................................................................1

Author.............................................................................................................................................4

License ...........................................................................................................................................4

Sources...........................................................................................................................................4

Supported Systems ..............................................................................................................4

Geocode Service: Provided Files ..........................................................5

geocode-dist.tar.gz ......................................................................................................5

Contents of geocode-dist.tar.gz ...............................................................................5

gcrespond.exe .....................................................................................................................6

Contents of gc_respond.exe........................................................................................6

Software Required, but not provided ..........................................................9

Compiler .......................................................................................................................................9

Berkeley DB..............................................................................................................................9

Apache httpd...........................................................................................................................10

The Fastcgi Apache Module.....................................................................................10

mod_fastcgi From Source ...........................................................................................11

The Fastcgi Library...........................................................................................................11

INSTALLATION OF THE PROVIDED
SOFTWARE ......................................................................................................................13

Overview. ..................................................................................................................................13

Step 1. Choose a base directory for the service. .....................................13



2

Step 2. Choose a directory layout........................................................................14

Step 3. Create the Directories..................................................................................16

Step 4. Install the Software Components......................................................17

Installing the PAGC library from the archive. .......................................................18

Installing geocode_response from the archive .........................................18

Installing pagc_build_schema from the archive......................................19

INSTALLING THE STANDARDIZATION FILES .........................20

INSTALLING THE PAGC SCHEMA TABLES..................................21

Step 5 : Copy the data to the directories ........................................................21

Step 6 : Build the data ....................................................................................................22

Step 7 : Configure Apache .........................................................................................24

Step 8 : Start Apache.......................................................................................................26

How the Geocoder Works .............................................................................27

Initialization ............................................................................................................................27

Request ........................................................................................................................................27

Scoring and Matching ....................................................................................................27

Candidates.................................................................................................................................28

Intersection Address.........................................................................................................28

Response ....................................................................................................................................29

Customization of the Geocoder Software ..............................30

Geocode Service API .........................................................................................32

GEOCODE REQUEST API ......................................................................32

PARAMETER_STRING ............................................................................................32

General Request Parameters .....................................................................................33

Request Specific Parameters ....................................................................................34

SITE ADDRESS PARAMETERS......................................................................35

INTERSECTION ADDRESS PARAMETERS......................................35

Complete Feature Address Parameters............................................................35

Place State Zip Parameters .........................................................................................36

Additional Parameters ....................................................................................................36

GeocodeService API: The Response .............................................37

Format of the Response ................................................................................................37

The Response.........................................................................................................................38



3

GeocodeResponse..............................................................................................................38

ResponseFaultList..............................................................................................................39

Fault................................................................................................................................................39

GeocodeResponseList ....................................................................................................40

GeocodedAddress ..............................................................................................................40

Address........................................................................................................................................41

GeocodeMatchCode.........................................................................................................41

source ............................................................................................................................................42

IntersectionAddress ..........................................................................................................42

SiteAddress ..............................................................................................................................43

CompleteOccupancyIdentifier................................................................................44

CompleteStreetName.......................................................................................................44

RequestedAddress..............................................................................................................45

Other Address Attributes .............................................................................................45

An XSD for the Geocode Service ......................................................47



4

Author

The author of this document is Walter Sinclair.

License

The software that this document describes is covered by the terms of the X/MIT License.
A Copy of that License is included in each archive of the software in a file entitled
COPYING.

Sources

This software is open-source, written in commented, unobfuscated ANSI C. All sources
are included in the distribution geocode-dist.tar.gz. This includes all the C sources and
headers. Included are the configuration and makefiles generated by autoconf, automake
and libtool, and the template files from which they were generated. Not included are the
sources of certain third party packages that may be necessary for the software to
successfully compile or operate. All of these packages, however, are also open-source and
readily available.

Supported Systems

This software is specifically intended for Windows and Linux systems running the
Apache webserver. However, there is nothing to preclude its use on other systems, such
as Mac OSX, or its operation with other kinds of webservers.

Windows. Note: Windows 3.1 is not supported. The software will run on
Windows 9x and ME if the PAGC library is configured at compile-time with the -
-enable-dbprivate flag. This allows the software to run but places constraints that
may not be acceptable.



5

Geocode Service: Provided Files

The software for the Geocode Service is provided in two files:

geocode-dist.tar.gz

This archive contains the archives and files necessary to build and install the software
from source.

gcrespond.exe

This installer contains the pre-compiled binaries and files for a Microsoft Windows
installation.

geocode-dist.tar.gz

Contents of geocode-dist.tar.gz

Included in geocode-dist.tar.gz are the following archives:

pagc-0.2.0.tar.gz

This archive contains the sources and files necessary for the PAGC geocoding library
to be built from source. This archive also contains base versions of the
standardization files rules.txt, lexicon.csv and gazeteer.csv.

geocode_response-1.0.1.tar.gz

This archive contains the sources and files necessary for the geocode_response
responder to be built from source.

pagc_build_schema-1.0.1.tar.gz

This archive contains the sources and files necessary to build the pagc_build_schema
command-line utility that creates the database indices used by geocode_response.

pagc_dump-1.0.1.tar.gz

This archive contains the sources and files necessary to build the pagc_dump
command-line utility from source.



6

pagc_stand-1.0.1.tar.gz

This archive contains the source and files necessary to build the pagc_stand
command-line utility from source.

Also included in geocode-dist.tar.gz are the following files:

build_streets.sh

This simple shell script is used, in the preferred directory configuration, to couple
pagc_build_schema with the streets shapeset data and schema file

build_parcels.sh

This simple shell script is used, in the preferred directory configuration, to couple
pagc_build_schema with the parcels shapeset data and schema file

streets.dbf

This xbase file is used to provide pagc_build_schema with the schema information
for the streets shapeset

parcels.dbf

This xbase file is used to provide pagc_build_schema with the schema information
for the parcels shapeset

gcrespond.exe

The Windows installer contains the libraries libpagc-2.dll, pthreadGC2.dll, and fcgi.dll.
It contains the executables geocode_response.exe, pagc_build_schema.exe,
pagc_dump.exe and pagc_stand.exe. It contains the standardization files rules.txt,
lexicon.csv, and gazeteer.csv. It contains two short batch scripts build_streets.bat and
build_parcels.bat.

Contents of gc_respond.exe

The Windows installer gc_respond.exe contains four components:

The First Component

libpagc-2.dll



7

This is the PAGC geocoding library compiled as a Windows dynamic link library.

The standardization files

These are the base versions of the standardization files rules.txt, lexicon.csv and
gazeteer.csv.

pagc_build_schema.exe

This is the program that transforms the shapesets into the form used by the responder

build_streets.bat

This simple batch file is used, in the preferred directory configuration, to couple
pagc_build_schema with the streets shapeset data and schema file

build_parcels.bat

This simple shell file is used, in the preferred directory configuration, to couple
pagc_build_schema with the parcels shapeset data and schema file

streets.dbf

This xbase file is used to provide pagc_build_schema with the schema information
for the streets shapeset

parcels.dbf

This xbase file is used to provide pagc_build_schema with the schema information
for the parcels shapeset

The Second Component

The second component in the installer is a choice of two variants of the responder.

FastCGI

This is geocode_response.exe compiled and configured to operate with the FastCGI
protocol

CGI

This is geocode_response.exe compiled and configured to run as an ordinary CGI
program



8

The Third Component

The third component contains the two utilities pagc_dump.exe and pagc_stand.exe

The Fourth Component

The fourth component contains documentation.



9

Software Required, but not provided

The data. The shapesets are not provided. There will be two shapesets.
The gcc C compiler, autotools, and utilities they use are not provided. These

should be readily available for your system if not already installed.
MINGW versions for Windows are available from http://www.mingw.org.
Apache httpd webserver.
Berkeley db.
Fastcgi Apache module. Note : The software also will function as a CGI program.

In this case Fastcgi is not needed.
Fastcgi library (included in the Fastcgi developer's kit). This too is not needed if

the responder is deployed as a CGI program.

Compiler
All configuration, compilation and installation from source assumes the use of the gnu c
compiler and standard c library. For Windows this is done with Mingw. Cygwin is not
supported. Microsoft and other proprietary compilers are also not supported. However,
the software is written in standard c. In order to use, for instance, Microsoft Visual C++
or Visual Studio, you will need to generate your own project.

Berkeley DB

Berkeley downloads are available from Oracle's Berkeley DB download site, located at
http://www.oracle.com/technology/software/products/berkeley-db/db/index.html. Choose
a version in the range 4.1-4.4, without encryption. For example : db-4.3.29.NC.tar.gz.
Do not use, for example, db-4.6.21.NC.tar.gz.

The PAGC library needs to link with a Berkeley DB version in the range 4.1-4.4. Many
Linux systems will have Berkeley DB already installed, but it may be older version.
Ensure that you have a version within the range stated. The PAGC configure script will
check this. Note: if you alter the PAGC configure script, it will not find versions greater
than 4.0 unless the pthreads library has already been found. If you edit - make sure the
pthreads m4 macro is run before the berkeley m4 macro.

Different versions of Berkeley is available from the Oracle website. You can have several
different versions installed. PAGC will link with one within range, if it exists in one of
the usual locations.

extract tar -xzf db-4.3.29.NC.tar.gz
cd db-4.3.29.NC/build_unix
../dist/configure
make



10

(as root or su : )
make install

Mingw. The Berkeley DB database is built from source as if unix (in the Berkeley
distribution's build_unix directory) with the --enable-mingw flag to configure. See the
Berkeley documentation.

Windows. The executables provided have Berkeley built-in. A separate installation is not
required.

Apache httpd

Apache is available for both Linux and Windows. An installer-packaged executable is
available for Windows. The software was tested with Apache 2.0, but the version is
important primarily for the fastcgi module. If using fastcgi you will want the module
appropriate for the Apache version. It is assumed here that modules are dynamically
loaded.

The Fastcgi Apache Module

The fastcgi module is not needed if the program is to run as a CGI program.

The downloads for fastcgi for Apache 2.2 are available from
http://www.fastcgi.com/dist/

For Apache 2.0 and 1.3 mod_fastcgi downloads:
http://www.fastcgi.com/dist/old/

Select the mod_fastcgi that corresponds to the version of Apache it will be running under.
Consult the Readme file that comes with the mod_fastcgi distribution on how to compile
and install.

Windows

Pre-compiled dlls of mod_fastcgi are available for each version of Apache. The names of
the distributions are: mod_fastcgi-2.4.2-AP13.dll (for Apache 1.3) , mod_fastcgi-2.4.2-
AP20.dll (for Apache 2.0) and mod_fastcgi-2.4.6-AP22.dll (for Apache 2.2).

Configure Apache for the Module

Place the dll or so in the modules directory (usually a child of the ServerRoot directory).
Add the module file name to the LoadModule list in the file httpd.conf (in the conf
directory, a child of the ServerRoot directory). For example:



11

LoadModule fastcgi_module $APACHE_MODULES/mod_fastcgi.so

$APACHE_MODULES should be replaced with the name of your Apache modules
directory.

A Windows example :

LoadModule fastcgi_module modules/mod_fastcgi-2.4.2-AP20.dll.

Note the forward slashes (instead of Windows back-slashes) in the pathnames.

mod_fastcgi From Source

To build mod_fastcgi from source, follow the directions in the INSTALL file in the
mod_fastcgi archive. The most recent distribution is mod_fastcgi-2.4.6.tar.gz.

The documentation does not state it, but you must also supply the httpd root both to make
and make install if the default, /usr/local/apache, doesn't work. You need http-devel, apr-
devel and apr-devel-util packages to be installed for the mod_fastcgi Makefile to work.

tar -xzvf mod_fastcgi-2.4.6.tar.gz
cd mod_fastcgi-2.4.6

If you are the Apache major version number is 2, then :

cp Makefile.AP2 Makefile
Continue with the following sequence, where $HTTP_ROOT should be replaced by
the Apache ServerRoot.

make top_dir=$HTTP_ROOT
make install top_dir=$HTTP_ROOT

Windows Binary.

Windows dlls may be downloaded from the fastcgi site from each version.

The Fastcgi Library

The fastcgi library is not needed if the program is to run as a CGI program.

The fastcgi developer's kit (fcgi-2.4.0.tar.gz) will build the current version of the fastcgi
library. The fastcgi library is needed to enable the responder for fastcgi and should be



12

made before geocode_response is made. It can be downloaded from the fastcgi website
http:://www.fastcgi.com/dist/.

Installation takes the usual course. A number of demonstration files are also compiled at
the same time.

tar -xzvf fcgi-2.4.0.tar.gz
cd fcgi-2.4.0
./configure
make
make install

Windows Fastcgi Library

For Microsoft Visual C++: The fastcgi developer's kit contains a Makefile.nt.

Mingw Fastcgi Library

A Windows binary of the fastcgi library is included in the installer. It is from the devpak
library libfcgi-2.4.0-1cm.DevPak, which can be downloaded from
devpaks.org <http://devpaks.org/details.php?devpak=63>

The contents page of www.devpaks.org contains this advice for using with Mingw :

A typical devpak will work with any MinGW distribution (with any IDE for
MinGW). Simply rename the file from something.devpak to something.tar.bz2
and open it with an archiver (e.g. 7-zip). You will see one file with some meta
information (name, version, author etc.) and a directory. Simply unpack the
contents of the directory to your MinGW directory tree.

Thus, download libfcgi-2.4.0-1cm.DevPak, and rename libfcgi-2.4.0-1cm.tar.bz2. This
library can be unpacked with tar and bzip2, but you may need (as I did) to move the
headers and library files into the /usr/local subtree in order for libtool to link them when
geocode_response is made. libfcgi.a goes into PREFIX/lib directory. fcgi_config_x86.h
and fcgiapp.h go into the PREFIX/include directory.



13

INSTALLATION OF THE PROVIDED
SOFTWARE

Overview.

The basic procedure in installing the software is to

Step 1. Choose a Base Directory for the responder.
Step 2. Choose a Directory Layout for the other components.
Step 3. Create the Directories.
Step 4. Install the software components
Step 5. Add the data.
Step 6. Build the data
Step 7. Configure Apache
Step 8. Start Apache.

You should be wearing the persona of root or administrator in installing the software.

The two principal issues in this process are (1) whether you running the program as CGI
or FASTCGI and (2) how you want to integrate the directories required into your system.
The second issue is explored in depth in Step 2. The first issue is discussed here.

FastCGI or CGI?

It is anticipated that FastCGI will give quicker response time on queries due to the fact
that it is not necessary to relaunch the responder for each request. However, it is easier
and possibly more portable to deploy the service as CGI. As a FastCGI server the
program is loaded once and stays running to handle requests. As a CGI program
geocode_response is loaded into memory and executed for each new request.

The decision to use FastCGI is implemented, first of all, in the installation of Third Party
Software above. mod_fastcgi and the fastcgi library are not required for CGI. Second, if
using FastCGI, geocode_response should be configure with the –enable-fastcgi switch,
discussed in the installation of geocode_response in Step 4. Third, Apache will need to
be configured differently for the different protocols. This is discussed in Step 7.

Step 1. Choose a base directory for the service.

A directory for running the geocoding service should be selected and/or created prior to
installing the software. This is the directory into which the geocode_response executable
will go. If the program is running as a CGI program it can be placed in whatever directory
is already set up in httpd.conf as the CGI directory. The Apache default, out of the box,



14

is /cgi-bin/. The directory can be configured (in step 7) with an alias, so it does not really
matter what the name or location is, if you wish to use an existing directory.

Step 2. Choose a directory layout.

The choice of the location and structure of the layout of directories for various
components of the software requires an understanding of how the running program
locates the files it needs.

On startup the geocoder needs to know where its database environments are located. It
expects two, one for PRECISE matching, which we will call 'parcels', and the other,
which we will call 'streets', for INTERPOLATION and INTERSECTION matching. The
first is a POINT shapeset and the second is an ARC shapeset. It also needs to know where
the PAGC standardization files are located.

To reduce the amount of work it needs to do to find these locations, the filenames (the
names of the files without the directory path) are compiled in with the executable.
Currently those names are (see the section on Customization for instructions on how to
change, substitute or add datasets) :

parcels_all7_points_lat83_point for the parcels environment
tlg_roads_lat83 for the streets environment.

It expects the parcels database environment to exist in a directory named 'parcels', the
streets environment to exist in a directory named 'streets', and the standardization files to
exist in a directory named 'standard'. It doesn't know, however, where these directories are
located.

The problem the geocoder confronts is this : because it is launched by Apache as a CGI or
FASTCGI it does not have commandline arguments passed to it. There are two options
available to it: (1) to read the locations from a file in a known location or (2) to pull the
locations off of the environment (a block of variable-value pairs) provided to it by
Apache.

Reading a file is a feasible strategy, but if the file is in a known location relative to the
geocoder, why not put all the files it needs in known locations?

The geocoder is not necessarily installed with the same pathname on all systems. It can, in
fact, be installed anywhere.

Another consideration is the fact that the environments may need to be updated
periodically. The geocoder would like to be able to find the new versions with as little
fuss and as little downtime as possible.



15

The locations can be put on the environment that the geocoder gets from Apache. The
values can be expressly assigned in a SetEnv directive in the httpd.conf configuration file
for Apache, or they can be passed through from the system environment with a PassEnv
directive in httpd.conf.

Thus, the geocoder will try three ways of getting those locations and will go with the first
one that works. These three ways correspond to three directory layouts for the geocoder,
the standardization files and the data environments.

I will name these three layouts : (1) Unified (2) Decapitated and (3) Dispersed.

Layout 1. Unified Layout.

In the Unified layout the program expects those three directories to be children of its
current working directory. So, if the program is launched from (for example)
/var/www/geocode, it will look for /var/www/geocode/streets , /var/www/geocode/parcels
and /var/www/geocode/standard.
In this case the geocoder doesn't need to be told anything about where the data is. It looks
to see if what it wants is where it would like it.

Layout 2. Decapitated Layout

In the Decapitated layout the parent of these directories is some directory other than the
geocoder's own. That is, all three of the desired directories are siblings, but the geocoder
is not located in their (common) parent. In this case the geocoder needs to know the name
of that parent. The geocoder looks in its environment for a value for the variable
PAGC_DATA_PATH. This is the name of the parent for the three siblings.

Layout 3. Dispersed Layout

In the Dispersed layout, each of those directories are not even siblings, but are dispersed
in different locations. In this case the geocoder needs to know the names of all three.
Thus the geocoder looks in its environment for values for the three variables
PAGC_STAND_PATH, PAGC_STREETS_PATH , and PAGC_PARCELS_PATH.
Each of these is the name of a parent for one of the three dispersed directories.

How the build utility builds and rebuilds the environments.

The build utility, pagc_build_schema, also needs to know where the data is. The main
product of its efforts is a Berkeley DB environment which holds the indices, memory
pool and data it creates.

Berkeley DB has a number of virtues - which is why it was chosen for this - but one of
them is not the moveability of its environments. They can be moved, but the move



16

actually takes as much or more time than having pagc_build_schema rebuild the
environment in a different location.

It is therefore desirable to build the environments in situ -- to build them in the location
where they will be accessed.

Rebuilding the datasets

The following strategy is suggested to minimize downtime for building new versions of
the data. While Apache is still in service, install the software into a new service directory.
Build the data as before but in the new directory subsystem. Produce a new httpd.conf with
the directives altered to configure the new location. When ready, stop Apache. Replace
the old httpd.conf file with the new one and restart. If the aliasing is done properly, the url
will not need to change.

Thus it proposed that the three siblings, streets, parcels and standard, be joined by a
fourth, build for the Unified and Decapitated directory model. pagc_build_schema,
located in the build directory, builds the data in its siblings, streets and parcels.

Step 3. Create the Directories.

The Windows Installer will do this in the Unified Layout. If choosing one of the other
options, you will have to move the directories around manually.

If installing from source, create four directories :

PARENT/streets -- the streets.dbf schema file and the streets shapeset is placed and built
here.
PARENT/parcels -- the parcels.dbf schema file and the parcels shapeset is placed and
built here.
PARENT/standard -- the standardization files rules.txt, lexicon.csv and gazeteer.csv are
placed here.
PARENT/build – the build executable, pagc_build_schema, will be placed here.

Create your directories as with the following templates.

mkdir --parents --mode=644 --verbose ${PARENT}/standard
mkdir --parents --mode=755 --verbose ${PARENT}/streets
mkdir --parents --mode=755 --verbose ${PARENT}/parcels
mkdir --parents --mode=755 --verbose ${PARENT}/build

For the Unified Layout, substitute in the above the name of the directory where
geocode_response will dwell for ${CGIDEST}. For the Decapitated Layout replace the



17

name of the common parent for ${CGIDEST}. For the Dispersed Layout replace each
instance with its parent.

Step 4. Install the Software Components.

Windows Installer
gcrespond.exe is the name of the installer.

click on it
agree to the license
choose the components to install. You must make a choice between the cgi

and the fastcgi versions.
navigate to the directory you have selected in Step 1.
install

Installing from Source with MINGW

The geocode service software is produced for both Linux and Windows. Both versions
may be produced from source - however, a Windows source installation will require that
the MSYS/MINGW posix-emulator be set up on the Windows machine. Cygwin is not
directly supported. For that reason the Windows version of the software is provided pre-
compiled and packaged in an installer. The installer is setup for the Unified Layout.

If you have MSYS/MINGW setup on your system you can use the Linux source. You will
need recent autotools (automake, autoconf, libtool in particular), the gnu c compiler, and
a version of the Berkeley DB database.

The Windows binaries of this software was prepared on MSYS/MINGW using the same
sources as the Linux version. The software can be built from source if you have installed
MSYS and MINGW. Get the latest of everything from www.mingw.net. Make sure you
get the latest stable versions of the gcc compiler, autotools and libtool. The main thing to
be aware of in doing this is that the software is compiled with MINGW in MSYS but it
meant to work on Windows without MSYS. Apache does not have an MSYS version.
The PAGC dll (unless configured with --enable-msys) will not work properly on MSYS.
It is installed to the usr/local/bin directory, but must go into one of the directories in
which Windows looks for it to work outside of MSYS. The executables (*.exe) will not
handle the MSYS / directory dividers properly. It is really a cross-compilation that is
taking place. The compilation process under MSYS is therefore the same as Linux. It
should be possible (although I haven't tried it) to do the cross-compilation for Windows
under Linux using a mingw target for autoconf. The object of all this is to use the same
set of tools (open-source tools) to generate the software. However, some of the elements
required only support compilation. For these elements (Apache, FastCgi), binaries are
available. Or, of course, they could be compiled with Visual Studio.



18

Installing the PAGC library from the archive.

You are in the directory containing the archive. Enter this sequence of commands on the
terminal commandline:

tar -xzvf pagc-0.2.0.tar.gz
cd pagc-0.2.0
chown ${APACHE_OWNER}:${APACHE_GROUP} *
./configure
make
make install

Substitute for the variables ${APACHE_OWNER} and %{APACHE_GROUP} the
values these have in httpd.conf.

This will install the PAGC library into PREFIX/lib and PREFIX/include directories. The
default value for PREFIX is /usr/local, but this value may vary. This value can also be set
to a different value by means of a commandline argument. Type ./configure –help for all
the options. The switches specific to this package are –enable-dbprivate (a flag
required to limit Berkeley access to a single process – a necessary condition for the
library to operate under Windows 9.x and ME). –-enable-msys configures the library to
run on MSYS rather than ordinary Windows. –-disable-approximate disables the
approximate index facility. If the approximate index is not needed, the library's
performance can be speeded up. –enable-threading is self-explanatory. The library uses a
small number of pthread mutexes or Windows critical sections to lock access to the
approximate trie. --enable-defaultcache is used to force the use of Berkeley's default
cache of 256 k. It is not anticipated that any of these switches will need to be used except
under exceptional circumstances.

Necessary pre-requisites for installation of PAGC are, principally, an acceptable version
of Berkeley DB. The configure script will conduct a search for this and other needed
components and abort if any are absent. The Berkeley version must be not greater than
4.4 and not less than 4.1.

Installing geocode_response from the archive

You are in the directory containing the archive. Enter this sequence of commands on the
terminal commandline:

tar -xzvf geocode_response-1.0.1.tar.gz
cd geocode_response-1.0.1
chown ${APACHE_OWNER}:${APACHE_GROUP} *
./configure
make

Substitute for $APACHE_OWNER and $APACHE_GROUP, the owner and group
for Apache as specifed in httpd.conf.



19

The PAGC libary is required for this installation. If the software is to be used with
Fastcgi, then the Fastcgi library must also be installed before geocode_response. If the
software runs threaded, then the pthreads library must all be present.

In addition to the usual configure switches ( ./configure --help will list them ), the
following have also been provided :

--with-pagc=DIR
If the PAGC library is installed in a location other than the default, then you will

need to supply an argument to configure (--with-pagc=DIR). The software is built with
libtool, so it will be able to reconstruct the dependency library for Berkeley from the
libpagc.la file.

--enable-fastcgi
This switch enables the USE_FCGX define in main.c and configures the software

for using the fastcgi library. Without this switch the software functions as a CGI program.
If this switch is used, the fastcgi library should be installed first. Ensure that the

fastcgi library's header files and libraries are installed in the subdirectories of the
PREFIX.

--enable-threads
This switch requires pthreads.
Mingw : To use Windows pthreads get the package from www.devpak.org.

Change the name of the file extension to bz2. Use bunzip2 to decompress the package
and then use tar to install. Read the file Readme in /docs on Mingw linking. configure
expects the GC2 version. semaphore.h, sched.h , pthread.h go into PREFIX/include,
pthreadGC2.dll goes into PREFIX/bin and libpthreadGC2.a goes into PREFIX/lib.

After the software is configured, type :
make.

Do not install (i.e. don't type : make install). Instead, install the program into the directory
where it will be running as either a CGI or FASTCGI program – the directory you
selected in Step 1.

Use the following as a template for installation of the executable :

install -c -m 755 $APACHE_OWNER -g $APACHE_GROUP ./geocode_response
${CGIIDEST}/geocode_response

The values for APACHE_OWNER and APACHE_GROUP can be found in the Apache
configuration file httpd.conf. CGIDEST represents the pathname that will be aliased in
the httpd.conf, the directory selected in Step 1.

Installing pagc_build_schema from the archive



20

You are in the directory containing the archive. Enter this sequence of commands on the
terminal commandline:

tar -xzvf pagc_build_schema-1.0.1.tar.gz
cd pagc_build_schema-1.0.1
chown ${APACHE_OWNER}:${APACHE_GROUP} *
./configure
make

The values for APACHE_OWNER and APACHE_GROUP can be found in the Apache
configuration file httpd.conf.

The PAGC libary is required for this installation. The getopt facility must also be
available.

In addition to the usual configure switches ( ./configure --help will list them ), the
following have also been provided :

--with-pagc=DIR
If the pagc library is installed in a location other than the default, then you will

need to supply an argument to configure (--with-pagc=DIR). The software is built with
libtool, so it will be able to reconstruct the dependency library for Berkeley from the
libpagc.la file.

After the program has been configured and compiled, it should be copied into the
directory in which it will be used.

Below the value of INSTALLDIR is the build directory created in Step 3,
${PARENT}/build.

install -c -m 755 -o $APACHE_OWNER -g $APACHE_GROUP ./pagc_build_schema
$INSTALLDIR/pagc_build_schema

If you are using the Unified Layout, or will be editing the scripts to correspond to another
layout, install the shell scripts in the same directory as pagc_build_schema.

install -c -m 755 -o $APACHE_OWNER -g $APACHE_GROUP ./build_streets.sh
$INSTALLDIR/build_streets.sh
install -c -m 755 -o $APACHE_OWNER -g $APACHE_GROUP ./build_streets.sh
$INSTALLDIR/ build_parcels.sh

For Windows the batch files build_streets.bat and build_parcels.bat will be substituted for
the shell scripts.

INSTALLING THE STANDARDIZATION FILES

The Windows Installer will do this in the Unified Layout. If choosing one of the other
options, you will have to move the standardization files around manually.



21

Install the standardization files in the /standard directory created in Step 3. For each of :

FILENAME=rules.txt
FILENAME=lexicon.csv
FILENAME=gazeteer.csv

and INSTALLDIR=${PARENT}/standard, and APACHE_OWNER and
APACHE_GROUP are as before, copy using the command template :

install -c -m 644 -o $APACHE_OWNER -g $APACHE_GROUP ./${FILENAME}
$INSTALLDIR/$FILENAME

Copy them also into the /build directory, the directory containing the executable
pagc_build_schema. That is, copy each of the three as in the previous set, but substitute
INSTALLDIR=${PARENT}/build.

Note: the installation of the PAGC library also installs them into a directory under
/usr/local/share (if gnu standards are observed).

See the discussion in topics.html on the function of the standardization files.

INSTALLING THE PAGC SCHEMA TABLES

The Windows Installer will do this in the Unified Layout. If choosing one of the other
options, you will have to move the schema tables around manually. The PAGC schema
tables for each of the two shapesets, streets.dbf and parcels.dbf, go into their respective
directories.

For each of FILENAME=streets.dbf and INSTALLDIR=${PARENT}/streets and
FILENAME=parcels.dbf and INSTALLDIR=${PARENT}/parcels, use this template:

install -c -m 644 -o $APACHE_OWNER -g $APACHE_GROUP ./${FILENAME}
$INSTALLDIR/$FILENAME

See the discussion in topics.html on the function of the schema tables.

Step 5 : Copy the data to the directories

The streets shapeset is copied to the directory ${CGIDEST}/streets, in which the
streets.dbf schema has been placed. The parcels, similarly, goes to the /parcels directory
to join the parcels.dbf schema table. It is assumed (see Step 2) that these shapesets are
named:

parcels_all7_points_lat83_point for the parcels environment
tlg_roads_lat83 for the streets environment.



22

Step 6 : Build the data

Once the directories are set up and the software is installed, build the data by executing
the scripts in the build directory from the command line or by invoking
pagc_build_schema directly. It is assumed in this discussion that the Unified Layout is
used. If not the shell scripts will have to be edited, or pagc_build_schema used directly.

Using the Scripts

./build_streets.sh
The build streets script executes the pagc_build_schema program to build the indices
and normalized records of the streets dataset (used for intersections and interpolation by
the geocoder. pagc_build_schema takes an -r flag, telling it the name and location of the
shapeset that it will build, and an -s flag, telling it the name and location of the schema it
will use to do it. Edit the build_streets.sh script to correct the shapeset name if it is
different from the name used in the script.

./build_parcels.sh
This operates in a similar fashion to build_streets. It builds the dataset for the parcels
(used for precise site matching by the geocoder).

Windows
build_streets.bat and build_parcels.bat operate in a similar manner to their Linux
analogues.

Using pagc_build_schema

pagc_build_schema is a command-line utility that may be used to convert a reference
shapeset into a form suitable for matching and geocoding.

Required runtime files

Required at runtime are:
The three standardization files
The source shapeset
A PAGC schema file
The presence of the PAGC library (if linking dynamically)

Productions
Productions of pagc_build_schema will be placed in the same directory as the source
shapeset. The main product is the normalized matching reference. See the discussion of
indices in the pagc topics document.



23

Build the data

You may examine the scripts to see how the program should be used – or type

pagc_build_schema –h

for a brief usage screen. pagc_build_schema takes an -r flag, telling it the name and
location of the shapeset that it will build, and an -s flag, telling it the name and location of
the schema it will use to do it. Open a terminal and navigate to the build directory.
In the build directory you will find the pagc_build_schema (*.exe) program. This is
the program that builds the data.

pagc_build_schema is a command-line utility. The arguments that direct it are passed as
command-line flags. It is invoked as

pagc_build_schema [-rREFERENCE_PATHNAME -sSCHEMA_PATHNAME [-p] [-
l] [-z]

If the -p flag is included the program will print, at 10% intervals, how far along it has
proceeded. This is sometimes reassuring.
If the -z flag is included the program will create, along with the database, a statistics file
REFERENCE_PATHNAME.sts that contains information on how what standardization rules
were used in normalizing the data. See the documentation on how to read it.
If the -l flag is included then a log is produced, build_log.err, that will document the
schema created, flags used, and what errors were encountered in normalizing and storing
the data.
The -rREFERENCE_PATHNAME is the location and name of the reference data. The
installer has created the parcels and streets directories in a known location for the
responder and build program to find easily.
The -sSCHEMA_PATHNAME is the location and name of the schema files used for
building the data. The installer has copied the proper schemas into the directories. Look
for streets.dbf in the streets directory and parcels.dbf in the parcels directory.

See the discussion in Topics.html on the file produced by pagc_build_schema.

Permissions on the Data

After pagc_build_schema finishes, check each dataset for owner, group and mode. If set
as root or as your username, change to the apache user and apache group. Set the mode
for 644.

The utilities pagc_dump and pagc_stand

These utilities are not directly involved in the operation of the geocoder and do not need
to be installed. They can be installed as needed to test standardizations and check the
contents of the database files.



24

pagc_dump is used to extract the contents of a pagc file to stdout or to examine an
individual record. Use > to redirect to a file. The -r flag gives pagc_dump the pathname
of the reference to operate on. The other flags (type pagc_dump without arguments to get
usage) tell it which indices. See topics.html for a discussion of which files correspond to
which indices.

pagc_stand takes addresses in two lines and gives details on the standardization of that
address. There are no arguments.

Both utilities require the PAGC library to be installed.

pagc_dump may be installed in the usual fashion : That is,

PACKAGE_NAME=pagc_dump-1.0.1
tar -xzvf pagc_dump-1.0.1.tar.gz
cd pagc_dump-1.0.1
./configure
make
make install

pagc_stand

tar -xzvf pagc_stand-1.0.1.tar.gz
cd pagc_stand-1.0.1
./configure
make
make install

Step 7 : Configure Apache

Apache must be configured for the base directory selected or created in Step 1 and where
the geocode_response executable was installed in Step 4. If the url for the service is to be
expressed as HOSTNAME/geocode/geocode_response (for example), then you need to
alias the realname of the directory . If you are running other programs in the same
directory, programs that cannot use that alias, you will need to use the alias already set.

For example, this is the directory I created on a Windows system:

C:\Program Files\Apache Group\Apache2\fcgi-bin

This is on a system where the Apache ServerRoot is

C:\Program Files\Apache Group\Apache2

Configure the directory for cgi



25

If you choose to run the program as CGI, the configuration consists of changing
httpd.conf so that your directory is substituted for the cgi-bin. In httpd.conf you will find
a script alias directive that enables the default cgi directory. You are looking for a line
that looks like:

ScriptAlias /cgi-bin/ "C:/Program Files/Apache Group/Apache2/cgi-
bin/"

It is ordinarily cgi-bin. Edit the directive so that it looks something like this :

ScriptAlias /geocode/ "C:/Program Files/Apache Group/Apache2/fcgi-bin/"

<Directory "C:/Program Files/Apache Group/Apache2/fcgi-bin">
AllowOverride None
Options None
Order allow,deny
Allow from all

</Directory>

Note : I am assuming here that you do not have other CGI programs running. You will
have to add a new configuration to use a different alias from that already set.

Configure the directory for fastcgi

If you instead wish to use fastcgi, you will have installed the fastcgi module and
configured Apache for it (see Third Party installations above).

Add the following directive to the httpd.conf , substituting your directory name for
mine as the value of Directory. Windows: Note the use of "/" instead of "\" and the "\"
at the end.

<IfModule mod_fastcgi.c>
Alias /geocode/ "C:/Program Files/Apache Group/Apache2/fcgi-bin/"
<Directory "C:/Program Files/Apache Group/Apache2/fcgi-bin">

SetHandler fastcgi-script
Options +ExecCGI

</Directory>
FastCgiServer "C:/Program Files/ApacheGroup/Apache2/fcgi-

bin/geocode_response.exe"
</IfModule>

Consult the mod_fastcgi documentation for other options. On some systems it will be
necessary to add a line assigning an IPC directory. This is where mod_fastcgi and its
process manager store their socket file descriptors. If that directory is inaccessible to
fastcgi then another directory is needed. If the default directory is symlinked and you
cannot change the permissions, you need a real directory with permissions that allow
access by all. For more information on how to configure Apache, consult
mod_fastcgi.html. This document is available on the fastcgi website
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html and is also included in the
mod_fastcgi distribultions.



26

Notes : If you get Permission Denied errors, try first to change the settings on the
logs/httpd directory (the real one, not the symlink) to o+x.

chown $APACHE_USER:$APACHE_GROUP

where $APACHE_USER and $APACHE_GROUP are the values assigned to the apache
user and group as defined in httpd.conf.

Decapitated and Dispersed Directory Layouts

For layout options other than the Unified Directory Layout, you will also need to add the
PassEnv or SetEnv directives for CGI or -initial-env directive for FastCGI. See Step
2 for the variables that will need to be passed to the program.

Step 8 : Start Apache

Once the data is built and Apache is configured, the geocode service is started by starting
Apache with the new http.conf file.



27

How the Geocoder Works
The following is a brief description of how the Geocoder does its work. For more details
consult the c source code.

Initialization

In CGI mode the responder is re-launched by the Apache httpd webserver as each new
request is received. In FastCGI mode it is launched by Apache when Apache starts and
stays running, waiting for requests. Requests are relayed to geocode_response by the
fastcgi module, mod_fastcgi, as they are received.

The program initializes by establishing where it is (the current working directory) and
where its data files are located. Once it has possession of this information it opens the
PAGC library and creates a PAGC schema record for each of the parcels and the streets
data sets, opening the database files and indices. In CGI the responder will then create a
PAGC matching context. In FastCGI it creates a number of matching contexts, each of
which awaits a request.

Request

When a request arrives, the variable-value pairs are retrieved. Each is checked against the
appropriate constraints to ensure that this value is a valid value for this variable. Then the
address data is concatenated into a form suitable for standardization and the results
dispatched, bound to the matching context, to PAGC.

PAGC standardizes the query address strings, producing up to 5 different standardization.
Each standardization, starting with the most likely (according to weights assigned to the
rules), is used to produce index lookup keys for the query.

Scoring and Matching

The kinds and number of keys produced will vary depending on whether this is an
intersection or site address query.

A site address query will first look for an exact match on the complete streetname. Then it
looks for an exact match on the base string name (ie without directionals, type or
modifieers). Then it looks for approximate matches, within an edit distance of 2 (within 2



28

deletions, insertions or transpositions) of the base street name. Finally it looks up a key
created from the soundex keys of each (non-numeric) word in the base street name.

With each index lookup a standardized address record is retrieved that serves as a
candidate for matching. For each candidate, the query address and candidate address are
compared, part by part, for a match. Each part of the address, if it matches, contributes a
positive weighted value. If it doesn't match it contribues a negative weighted value.The
sum of these values constitutes the candidate's score.

Candidates

The scored candidate is then placed in score order on the matching context's candidate
list. If the list is full the candidate will displace another candidate if its score is greater or
equal to the score of the last candidate on the list. Otherwise it is chucked. If at any point
in the candidate generation process, a candidate is found that has the maximum possible
score, the search is terminated and that candidate is returned. However, except in that
circumstance, the search continues until it has a list of the top 100 candidates for the
matching context. At this point control returns from PAGC to the geocoder.

The responder now creates its own candidate list summoning PAGC on each to geocode
the address or intersection. The candidates are scored and stored purely on the basis of the
correspodence between their addresses and the query address. The streets database
consists of blockrange records. It may be the fact that a candidate address, representing a
blockrange, scores well enough on other attributes to make it onto the candidate list, but
the query address number does not, in fact, fall into the interval given by the blockrange.
An address that is non-geocodable in this manner is not added to the responder's list. The
score of each candidate that is kept is normalized to a value between 0.00 (least likely)
and 1.00 (most likely) and is formatted according to the format specified by the request.
The responder retains the top 30 candidates.

The responder performs the above procedure to a site address. In this case the PAGC
matching context is first bound to the parcels schema and looks for a "precise" match.
After this procedure, if the top candidate fails to reach or exceed a certain score, the
responder rebinds the context to the streets schema record and looks for an "interpolated"
match, once again summoning PAGC to produce candidates. The products of this are
sorted into the geocoder's candidate list.

Intersection Address

The procedure for an intersection address is performed in a like manner. PAGC however
employs a different kind of index search for intersections. The same sequence of name,
approximate name and soundex key searches is conducted. However, because the streets



29

environment contains indices formed from a concatenation of the base street name of the
record and the base street name of the cross-street, it searches these indices first. Then, if
it is disappointed by the results, it retrieves records matching one street name and those
matching the other and joins them based on their coordinates.

Response

When the responder has candidate list in its possession each candidate will have been
formatted, geocoded and scored. The list is then combined into the appropriate geocode
list format. That list is combined with the other elements of the response – the original
requested address, the response header and a list of faults, if any – and the response is
returned (via Apache and mod_cgi or mod_fastcgi) to the user-agent that generated the
request.



30

Customization of the Geocoder Software

Customization of the geocode service software for different datasets is accomplished by
editing thedata_cap.h header prior to compilation. The dataset names specified in
that header should be built by pagc_build_schema in a similar manner to that described in
this document, according to schema tables that may or may not differ from those provided
(see the topics document on the schema tables on how to construct them).
The data_cap.h includes a definition of a PAGC_DATA_CAP record. Do not modify
this. There follow 4 lines of definitions:

#define NUM_LANDMARK_SCHEMAS 1
#define NUM_MATCH_SCHEMAS 1
#define HAVE_SITE_INTERPOLATED
#define HAVE_SITE_ADDRESS_PRECISE

Do not delete or modify the first two lines if you have 1 or fewer match schemas (a
dataset that matches precisely on the coordinates). If you have more than 1, change the 1
at the end of line 2 to the number of datasets you will have. If you have no match
schemas, delete line 4. To specify your datasets, add corresponding records to the array
match_data_cap_table and provide the strings for each of the 5 fields defined in the
PAGC_DATA_CAP record:

pagc_schema_name , local_directory_name , environment_variable ,
reported_source_name , reported_geocode_method .

The pagc_schema_name is the file name of the data set. The local_directory_name is
the relative path name of the directory in which the data set is located so that the geocoder
can locate it by either the unified or decapitated layout described above. The
environment_variable is the associated variable used in the dispersed layout described
above. The reported_source_name is the name used to report a source in the source
field, and the reported_geocode_method is the method reported. As an example, the
current match_cap_table is given as :

PAGC_DATA_CAP match_data_cap_table[ NUM_MATCH_SCHEMAS ] = {
{ "parcels_all7_points_lat83_point" , "parcels" , "PAGC_PARCELS_PATH"

, "parcels_all7_points_lat83_point" , "PRECISE" }
} ;

To add new schemas, modify the NUM_MATCH_SCHEMA value and add a new record
to the match_data_cap_table array. Schema records should appear in the order you wished
them searched. Add new records with quote marks enclosing strings and commas
following between fields and records (but not at the end of a record or the table). The
beginning of the table and each record has a left parenthesis. The end of the table and
each record has a right parenthesis.



31

It is assumed that you will have precisely one interpolation schema (a streets dataset that
uses interpolation to locate addresses and is used for intersection searches). If you do not
have an interpolation database, delete line 3 above (#define
HAVE_SITE_INTERPOLATED). Change the PAGC_DATA_CAP record to customize its
values. As an example, the current interpolation record is defined as :

PAGC_DATA_CAP interp_data_cap = {
"tlg_roads_lat83" ,
"streets" ,
"PAGC_STREETS_PATH" ,
"tlg_roads_lat83" ,
"INTERPOLATED"

} ;

The ability of your schemas to provide values for all the fields described in the api will
depend on the data in the dataset itself and the values specified in its schema table.

In addition to the above, you may change the local directory name of the standardization
directory (as used by the unified, decapitated and dispersed layouts), which is currently
defined as :

static const char *stand_directory_string = "standard" ;

You may also modify the score which triggers a new dataset search. It is currently defined
as :

#define ACCEPTABLE_SCORE .9

And, finally, you may also modify the header that is included in the XML version of the
response. Note that it should correspond to the xsd employed.



32

Geocode Service API

The Geocode Service API consists of two parts. The first part, the GEOCODE
REQUEST API, describes the protocol for making a geocode request. The second part,
the GEOCODE RESPONSE API describes the format and content of the response that is
returned.

GEOCODE REQUEST API

The geocoder is invoked by submitting a PARAMETER_STRING as an HTTP POST or
GET request to:

HOST_URL/geocode_response.exe

The request, in the PARAMETER_STRING form described below, is sent via the HTTP
POST method with content-type set to application/x-www-form-urlencoded. The
characters are expected to be UTF-8 encoded and the entire request must be less than 4
kilobytes (4096 bytes) in length. The request may also be sent via the HTTP GET method
in the following format:

HOST_URL/geocode_response.exe?PARAMETER_STRING

PARAMETER_STRING

The PARAMETER_STRING is composed of variable-value pairs concatenated together
with ampersands ( & ). Each variable-value pair consists of a permissable variable name
bound with an equal sign ( = ) to a urlencoded client-assigned value. The parameter string
will be composed of general parameters which may appear in any request, and of request-
specific parameters which will be present or absent, depending on the kind of request.
Notwithstanding this distinction, variable-value pairs may appear in the string in any
order. The values assigned may be submitted either in upper or lower case letters.

Urlencoded

A value is urlencoded by (a) substituting a plus for a space and (b) subsituting a three-
character code for any character not permissable in an http url query string context. This
three-character code is composed of a percentage sign (%) followed by the 2 character
hexadecimal representation of the character. For example, a forward slash (in a fraction)
or ampersand (in a street name such as Joseph & Mary) will need to be urlencoded. Note:
some urlencoders substitute %20 (the hexadecimal representation for the space character)



33

for a plus. This should decode correctly. Even so, a plus that is not used as a substitution
for a space must be urlencoded.

PARAMETER_STRING example

methodName=GeocodeRequest&Version=1.1&CompleteAddressNumber=1234&C
ompleteStreetName=W+Main+St&PlaceName=Anywhere

General Request Parameters

The General Request Parameters must or may appear in any request, regardless of the
kind of request.

methodName

Required. All requests must include a value for the methodName variable. This value
describes the type of request being made. Currently accepted values are:

methodName=GeocodeRequest

The method GeocodeRequest is a request to take an unnormalized address and
produce a normalized address bound to standard coordinates. The methodName must
be a valid query method that the responder can accept. In version 1.1 the only valid
methodName is GeocodeRequest. This method is a request for the latitude and
longitude of an address for either (a) A site address - the address of a site on a
thoroughfare identified by a number, street name, place name and/or postal code - or
(b) An intersection address - the intersection of two thoroughfares identified by two
street names with place name and/or zip code.

Version

Required. All requests must include a value for the Version. This is a decimal value
stating the method Version. This will allow the requester to expect a predictable
response. Currently accepted values are:

Version=1.1

CountryCode

Required. All requests must include a value for the CountryCode variable.

A string of 2 characters that gives the CountryCode for which the request is
applicable. It must be present but the value is ignored in this version.

An example is

CountryCode=US



34

.

RequestID

Optional All requests may include a client-assigned value for RequestID. This value,
if included, must be a string not less than 1 character and not greater than 255
characters in length. An example is

RequestID=12345ABC

maximumResponses

Optional All requests may include a value for the variable maximumResponses. This
value, if provided, must be a positive integer not less than 1 and not greater than 30. If
not given, the default of 30 is used. It controls the number of candidates returned, in
the event of an imperfect match. An example of its use is

maximumResponses=3

ResponseFormat

Optional All requests may include a value for the parameter ResponseFormat.
Currently accepted values:

ResponseFormat=XML

ResponseFormat=JSON

ResponseFormat=CSV

Request Specific Parameters

There are two types of GeocodeRequest supported by this responder:

Site Address
Intersection Address

Site Address

A site address is a location denoted by a locale-specific thoroughfare name and an
identifier (usually numeric) that positions the location relative to the extent of the
thoroughfare.

Intersection Address

An intersection address is the location of the intersection or junction of two
thoroughfare and is denoted by the pairing of the locale-specific thoroughfare names.



35

The responder determines the nature of the request from the presence or absence of
certain parameters. The presence of the address number, for example, should indicate that
a request is for a site address, while the presence of a second street name should indicate
that a request is for an intersection. Consequently two (intersecting) sets of parameters are
specified: SITE_ADDRESS_PARAMETERS and
INTERSECTION_ADDRESS_PARAMETERS.

SITE ADDRESS PARAMETERS

A Site Address GeocodeRequest must include CompleteAddressNumber.
A Site Address GeocodeRequest must include CompleteStreetName.
A Site Address GeocodeRequest must not include CompleteStreetName2.
A Site Address GeocodeRequest may include CompleteOccupancyIdentifier.
A Site Address GeocodeRequest may include Place State Zip Parameters.
A Site Address GeocodeRequest may include a value for the InterpolationOffset

variable.
A Site Address GeocodeRequest may include a value for the RequestStrategy

variable.

INTERSECTION ADDRESS PARAMETERS

A Intersection Address GeocodeRequest must not include
CompleteAddressNumber.

A Site Address GeocodeRequest must include CompleteStreetName.
A Site Address GeocodeRequest must include CompleteStreetName2.
A Site Address GeocodeRequest must not include CompleteOccupancyIdentifier.
A Site Address GeocodeRequest may include Place State Zip Parameters.
 A Site Address GeocodeRequest may include a value for the InterpolationRadius

variable.

Complete Feature Address Parameters

CompleteAddressNumber

Required for Site Address, Forbidden for Intersection Address. This is a string that
identifies an address identifier. It is sometimes called the house number or civic
number. It should be a series of digits and may be preceded by a series of letters
and/or followed by a series of letters. Rural route boxes (and other non-thoroughfare
locators, such as latitude-longitude addresses) are not supported by this version. If no
alphabetic characters are specified, it may be terminated by a fraction. It must not be
present in an intersection request.



36

CompleteStreetName

Required for Site Address, Required for Intersection Address. This is an string that
identifies the full name of the thoroughfare, including directionals, types and
qualifiers.

CompleteStreetName2

Forbidden for Site Address, Required for Intersection Address. This is an string that
identifies the full name of the intersecting thoroughfare, including directionals, types
and qualifiers.

CompleteOccupancyIdentifier

Optional for Site Address, Forbidden for Intersection Address. This is a string that
serves as a floor, unit or building identifier within the location identified by the
CompleteAddressNumber. This version of the geocoder will accept the string but
does not use it.

Place State Zip Parameters

PlaceName

Optional. This is a string that identifies the municipal, town or city name in which
the address is located.

StateName

Optional. This is a string that identifies the state, province, or national subdivision in
which the place name is located.

ZipCode

Optional. The value for this parameter should be the USPS postal zip code for the
address.

ZipPlus4

Optional. This 4 digit number identifies the extension to the zip code and should not
be present if the zip code is absent.

Additional Parameters



37

RequestStrategy

Optional. The default is RequestStrategy=Both - The responder first attempts to
match with a precise address. If results are not satisfactory, it abandons the precise
results and does an interpolated matching. If the value for this variable is
RequestStrategy=Precise the responder returns only the precise results. If the
value is RequestStrategy=Interpolated it returns only interpolated results.

InterpolationOffset

Optional. This value must be a decimal number not less than 0.00 and not greater
than 100.00. It is interpreted as the number of meters to offset an interpolated address
from the street. The default is 5.0. For example, to set the returned coordinates at 10
meters from the road, use InterpolationOffset=10.0.

IntersectionRadius

Optional. This value must be a decimal number not less than 0.00 and not greater
than 100.00. It is interpreted as the maximum distance within which two points will
snap together to form an intersection. It is interpreted as the radial distance from the
center of an intersection such that all points. This parameter allows the user to
configure for locales which have large intersections or have short distances between
intersections. As a special usage, setting the variable to zero will ensure that all points
within the default in an intersection are returned (rather than a single representative
point). The default is 30.00 meters.

GeocodeService API: The Response

Format of the Response

The format of the Response is governed by the value of the ResponseFormat variable in
the client-submitted request. There are, therefore, three possible formats: XML (default),
JSON and CSV.

XML

XML is the default format for the response. The content-type of the xml Response is
text/xml. An xml schema, GeocodeResponse.xsd, specifies the form.

JSON

The content-type of the JSON response is application/json. The Response is a
JSON object.



38

CSV

The content-type of the CSV Response is text. It will consist of newline-terminated
lines of comma-delimited values. For each section that appears in the response the
first line will give the element names and will be followed by one or more lines
giving the corresponding values.

The Response

The Response is the response received from the GeocodeService. The XML Response
structure will have two attributes, the RequestID, the Version, and an element, the
GeocodeResponse. The JSON object will have three fields, the RequestID, the Version,
and the GeocodeResponse. The The first line of the response is the header field list. The
CSV header will have have the four field names "Version", "RequestID",
"numberOfGeocodedAddresses", and "numberOfFaults". The values given for the
numberOfGeocodedAddresses and numberOfFaults determines the structure of the rest of
the response. If the numberOfGeocodedAddresses is non-zero there will be a list of
geocoded addresses. If the numberOfFaults is non-zero there will be a list of error reports.
If both are non-zero the list of geocoded addresses will precede the list of errors. For each
list there will exist, in addition to the values for each item on the list, a header line giving
the fieldnames. The final structure is the requested address, which will again consist of a
headerline of field names followed by a single line consisting of the corresponding
values.

Version

This is the interface version of the response. It should match the Version of the
submitted request. The minimum value is 1.1.

RequestID

This returns verbatim the RequestID submitted by the sender. It will be blank if no
RequestID was submitted.

GeocodeResponse

The value of the GeocodeResponse field is a GeocodeResponse object

GeocodeResponse

The GeocodeResponse object has three elements: The GeocodeResponseList, The
ResponseFaultList, and the Requested Address.



39

GeocodeResponseList

This contains the list of geocoded match candidates. The GeocodeResponseList is
empty if no addresses are returned and absent if an error occurs before it is generated.
See the GeocodeResponseList object

ResponseFaultList

The ResponseFaultList is a list of error reports and is present only if an error occurs.
See the ResponseFaultList object

RequestedAddress

The RequestedAddress is absent only if an error occurs before it is retrieved. See the
RequestedAddress object

ResponseFaultList

The ResponseFaultList object is a sequence of one or more Faults. The number of items
on the list will be given by the numberOfFaults.
In an XML response the ResponseFaultList is an element of the GeocodeResponse object.
It will contain a sequence of Faults. The numberOfFaults is an attribute of the
ResponseFaultList.
In a JSON response the ResponseFaults field will belong to the Response object and will
possess the ResponseFaultList field and the numberOfFaults field.
The CSV response will contain a separate header-initiated section. It will contain a header
following by a list, one line each of the corresponding reports. The header will read :
"faultcode", "faultstring", "detail". There will be one comma-delimited value for each of
these fields and thus three values per line.

Fault

If the ResponseFaultList is present in the response, then there will be one or more
Faults. See the Fault object. In JSON this will be an array of faults. In XML it will be
a sequence of fault objects

numberOfFaults

In a CSV response this value will be stated in the header section. If it is zero the
ResponseFaultList will not be present.

Fault



40

Each fault object will contain three fields: a faultcode, faultstring and a detail field.

faultcode

The faultcode is one of either "Client" or "Server".

faultstring

The faultstring for "Client" is "Bad client content" and for "Server", "Server process
error". It should be noted that the expression of these two fault types is not, as it
would seem, an assignation of blame.

detail

The detail field will give a brief diagnostic of the fault that may assist either the client
or server in correcting the problem encountered. This diagnostic may be an error
message generated by the responder or by a software library linked to the responder.

GeocodeResponseList

The GeocodeResponseList is a list of geocoded addresses. The number of elements on the
list is given by the numberOfGeocodedAddresses field.

numberOfGeocodedAddresses

This is the number of GeocodedAddresses that appear on the list. This is an integer
value that can range from 0 to the maximum (30). In XML this is an attribute.

GeocodedAddress

See the GeocodedAddress object

GeocodedAddress

A GeocodedAddress consists of three parts.

The normalized address.
The position
The accuracy.
Address source data



41

In a JSON response the GeocodedAddress field has as its value an object consisting of the
address object, a Point field which has as its value an object with the fields Latitude and
Longitude, and a GeocodeMatchCode field. In a CSV response the Address values will be
followed by the latitude, longitude, accuracy matchType, note, dataSource and
addressIdentifier fields, all on a single line. The CSV field names will thus be the
Address field names followed by "Latitude", "Longitude", "accuracy" , "matchType" ,
“dataSource” and “addressIdentifier”.

Address

See the Address object

gml:Point

This is the latitude and longitude of the position. In JSON and CSV Address objects
the latitude and longitude are represented in separate fields. In XML the field is
named "gml:Point".

GeocodeMatchCode

See the GeocodeMatchCode object

source

See the source object

Address

The Address element will contain either a SiteAddress or an IntersectionAddress. The
Address is the normalized address of the candidate. It will be articulated in a fashion
consistent with the Street Address Data Standard. It will be either a SiteAddress or
IntersectionAddress, depending on the nature of the request.

SiteAddress

See the SiteAddress object

IntersectionAddress

See the IntersectionAddress object

GeocodeMatchCode



42

The GeocodeMatchCode field has as its value an object with an accuracy element and a
matchType element.

accuracy

The accuracy field will be a decimal value not less than 0.00 and not more than 1.00
and will indicate the degree of correspondence between the requested address and the
normalized reference address.

matchType

The matchType field will contain one of the values "Precise" or "Interpolated",
indicating whether the position was determined by matching a record that specified
that position or whether the position was determined by matching with an arc record
and calculating the ratio of its address number with the range between the starting
address number and its position and the ending address number and its position.

note

The note field will contain the value “P” if the returned address disagrees in parity
with other addresses in its address range. This is used for “Interpolated” addresses and
will be empty if the address is not interpolated or if the parity does not disagree.

source

The source field has as its value an object with a dataSource element and an
AddressIdentifier element.

dataSource

The dataSource field will indicate the file name or other identifier of the dataset from
which the address data is taken.

addressIdentifier

The addressIdentifier field will indicate the identifier for the specific record from
which the address data is taken. This element may be empty for Intersection
responses.

IntersectionAddress

An Intersection Address expresses the intersection of two thoroughfares.
Note: Only one set of PlaceStateZip elements are given, despite the fact that there could
be more than one at intersections that fall upon a civic or postal boundary.



43

CompleteStreetName

This will be a sequence of precisely two normalized CompleteStreetNames

PlaceName

See PlaceName.

PlaceName_USPS

See PlaceName_USPS.

StateName

See StateName.

ZipCode

See ZipCode.

ZipPlus4

See ZipPlus4.

SiteAddress

This is an address identified by a numeric or quasi-numeric identifier and a streetname.
The CompleteAddressNumber and CompleteStreetName fields will always be present.

CompleteAddressNumber

See CompleteAddressNumber

CompleteStreetName

See CompleteStreetName. This will be a normalized, parsed object in a SiteAddress
response.

CompleteOccupancyIdentifier

See CompleteOccupancyIdentifier. This will be a normalized, parsed object in a
SiteAddress response

PlaceName

See PlaceName.

PlaceName_USPS



44

See PlaceName_USPS.

StateName

See StateName.

ZipCode

See ZipCode.

ZipPlus4

See ZipPlus4.

CompleteOccupancyIdentifier

Unit

This is generally an internal building subdivider

Building

This is a separate building identifier where a single CompleteAddressNumber
identifies more than one building

CompleteStreetName

The CompleteStreetName, in the RequestedAddress object, represents the unnormalized,
unparsed street name as sent by the client. In the response, the name is normalized and
parsed into the below fields. In the normalized CompleteStreetName any one of the fields
may be present, but the StreetName is always present

PreModifier

A pre-positioned qualifier to the street name, such as Old in Old Highway 99

PreDirectional

A directional indicator that precedes the Street name, such as West in West 107th
Street

PreType

This is a street type that precedes the StreetName. For example, Highway in Highway
17, or Rue in Rue Morgue.



45

StreetName

This field is always present. It is the base name for the street. This will be the official
(unstandardized) name of the Street, as represented in the record.

PostType

The street type that follows the Street Name. For example, Street in Main Street

PostDirectional

A directional indicator that follows the street name, such as Northwest in 17th
Avenue Northwest

PostModifier

A post-positioned qualifier to the street name

RequestedAddress

This returns the unnormalized address submitted by the client. The fields stated
correspond to those included in the request and will differ, depending on the nature of the
Request. There will be, for example, a CompleteStreetName and CompleteStreetName2
field if it is an intersection request.

Other Address Attributes
CompleteAddressNumber

This is the identifier for a SiteAddress.

PlaceName

This is the city, town or municipal name of the area in which the address is located.
This may occur in a SiteAddress, IntersectionAddress or the RequestedAddress.

PlaceName_USPS

This is the post office name for this address. This may occur in a SiteAddress or
IntersectionAddress.

StateName

This is the state in which the address is located. This may occur in a SiteAddress,
IntersectionAddress or the RequestedAddress.



46

ZipCode

This is the 5 digit USPS postal code for the address. This may occur in a SiteAddress,
IntersectionAddress or the RequestedAddress.

ZipPlus4

This is the 4 digit extension to the USPS postal code. This may occur in a
SiteAddress, IntersectionAddress or the RequestedAddress.



47

An XSD for the Geocode Service

<?xml version="1.0" encoding="UTF-8" ?>
- <xsd:schema targetNamespace="http://www.metrogis.org/geocode"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns="http://www.metrogis.org/geocode">
<xsd:import namespace="http://www.opengis.net/gml"

schemaLocation="http://dp.schemas.opengis.net/05-
029r4/gml/3.1.1/profiles/point/0.4.0/gml311PointProfile.xsd
" />
- <!--

*********************************************************************

-->
- <!--

** The Top-Level Element. **

-->
- <!--

*********************************************************************

-->
- <xsd:element name="GeocodeService">

- <xsd:annotation>
<xsd:documentation xml:lang="en">The global

element.</xsd:documentation>
</xsd:annotation>

- <xsd:complexType>
- <xsd:all>

<xsd:element name="Response" type="ResponseType"
/>

</xsd:all>
</xsd:complexType>

</xsd:element>
- <xsd:simpleType name="AddressAttributeString_type">

<xsd:restriction base="xsd:normalizedString" />
</xsd:simpleType>

- <xsd:simpleType name="faultcode_type">
- <xsd:restriction base="xsd:token">

<xsd:enumeration value="client" />
<xsd:enumeration value="server" />

</xsd:restriction>
</xsd:simpleType>

- <xsd:simpleType name="faultstring_type">
- <xsd:restriction base="xsd:string">



48

<xsd:enumeration value="Bad client content" />
<xsd:enumeration value="Server process error" />

</xsd:restriction>
</xsd:simpleType>

- <xsd:simpleType name="ZipCode_type">
- <xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9]{5}" />
</xsd:restriction>

</xsd:simpleType>
- <xsd:simpleType name="ZipPlus4_type">

- <xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]{4}" />

</xsd:restriction>
</xsd:simpleType>

- <xsd:simpleType name="GeocodeNote_type">
<xsd:restriction base="xsd:string" />

</xsd:simpleType>
- <xsd:simpleType name="GeocodeAccuracy_type">

- <xsd:annotation>
<xsd:documentation xml:lang="en">0.0 is least probable

and 1.0 is most probable</xsd:documentation>
</xsd:annotation>

- <xsd:restriction base="xsd:decimal">
<xsd:minInclusive value="0.0" />
<xsd:maxInclusive value="1.0" />

</xsd:restriction>
</xsd:simpleType>

- <xsd:simpleType name="ListEnumerator_type">
<xsd:restriction base="xsd:nonNegativeInteger" />

</xsd:simpleType>
- <xsd:simpleType name="GeocoderVersion_type">

- <xsd:annotation>
<xsd:documentation xml:lang="en">The Version of the

response should match that of the
request.</xsd:documentation>

</xsd:annotation>
- <xsd:restriction base="xsd:decimal">

<xsd:minInclusive value="1.1" />
</xsd:restriction>

</xsd:simpleType>
- <xsd:simpleType name="GeocodeMatchType_type">

- <xsd:annotation>
<xsd:documentation xml:lang="en">A position calculated

by interpolating on a block range is specified as
interpolated - otherwise it is
precise.</xsd:documentation>

</xsd:annotation>
- <xsd:restriction base="xsd:token">

<xsd:enumeration value="precise" />
<xsd:enumeration value="interpolated" />



49

</xsd:restriction>
</xsd:simpleType>

- <xsd:simpleType name="RequestID_type">
- <xsd:annotation>

<xsd:documentation xml:lang="en">The RequestID is
verbatim as submitted by the
client.</xsd:documentation>

</xsd:annotation>
<xsd:restriction base="xsd:string" />

</xsd:simpleType>
- <xsd:simpleType name="ErrorReport_type">

<xsd:restriction base="xsd:string" />
</xsd:simpleType>

- <xsd:simpleType name="DataSourceID_type">
<xsd:restriction base="xsd:string" />

</xsd:simpleType>
- <xsd:complexType name="RequestedAddress_type">

- <xsd:annotation>
<xsd:documentation xml:lang="en">This is the address

submitted by the client, parsed as
submitted.</xsd:documentation>

</xsd:annotation>
- <xsd:all>

<xsd:element name="CompleteAddressNumber"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="CompleteStreetName"
type="AddressAttributeString_type" minOccurs="1"
maxOccurs="1" />

<xsd:element name="CompleteStreetName2"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="CompleteOccupancyIdentifier"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="PlaceName"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="StateName"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="ZipCode"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="ZipPlus4"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

</xsd:all>
</xsd:complexType>

- <xsd:complexType name="CompleteStreetName_type">
- <xsd:all>



50

<xsd:element name="PreModifier"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="PreDirectional"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="PreType"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="StreetName"
type="AddressAttributeString_type" minOccurs="1"
maxOccurs="1" />

<xsd:element name="PostType"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="PostDirectional"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="PostModifier"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

</xsd:all>
</xsd:complexType>

- <xsd:complexType name="CompleteOccupancyIdentifier_type">
- <xsd:all>

<xsd:element name="Unit"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="Building"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

</xsd:all>
</xsd:complexType>

- <xsd:complexType name="SiteAddress_type">
- <xsd:all>

<xsd:element name="CompleteAddressNumber"
type="AddressAttributeString_type" minOccurs="1"
maxOccurs="1" />

<xsd:element name="CompleteStreetName"
type="CompleteStreetName_type" minOccurs="1"
maxOccurs="1" />

<xsd:element name="CompleteOccupancyIdentifier"
type="CompleteOccupancyIdentifier_type"
minOccurs="0" maxOccurs="1" />

<xsd:element name="PlaceName"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="PlaceName_USPS"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />



51

<xsd:element name="StateName"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="ZipCode" type="ZipCode_type"
minOccurs="0" maxOccurs="1" />

<xsd:element name="ZipPlus4" type="ZipPlus4_type"
minOccurs="0" maxOccurs="1" />

</xsd:all>
</xsd:complexType>

- <xsd:complexType name="IntersectionAddress_type">
- <xsd:annotation>

<xsd:documentation xml:lang="en">Only one set of
PlaceStateZip elements are given, despite the fact
that there could be more than one at intersections
that fall upon a civic or postal
boundary.</xsd:documentation>

</xsd:annotation>
- <xsd:sequence>

<xsd:element name="CompleteStreetName"
type="CompleteStreetName_type" minOccurs="2"
maxOccurs="2" />

<xsd:element name="PlaceName"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="PlaceName_USPS"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="StateName"
type="AddressAttributeString_type" minOccurs="0"
maxOccurs="1" />

<xsd:element name="ZipCode" type="ZipCode_type"
minOccurs="0" maxOccurs="1" />

<xsd:element name="ZipPlus4" type="ZipPlus4_type"
minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

- <xsd:complexType name="GeocodeMatchCode_type">
- <xsd:annotation>

<xsd:documentation xml:lang="en">This characterizes the
matching of the requested address to this normalized
address and its position.</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="accuracy" type="GeocodeAccuracy_type"

/>
<xsd:attribute name="matchType"

type="GeocodeMatchType_type" />
<xsd:attribute name="note" type="GeocodeNote_type" />

</xsd:complexType>
- <xsd:complexType name="source_type">

- <xsd:all>



52

<xsd:element name="dataSource" type="dataSource_type"
/>

<xsd:element name="addressIdentifier"
type="dataSource_type" />

</xsd:all>
</xsd:complexType>

- <xsd:complexType name="Address_type">
- <xsd:annotation>

<xsd:documentation xml:lang="en">The Address element
will contain either a SiteAddress or an
IntersectionAddress.</xsd:documentation>

</xsd:annotation>
- <xsd:choice>

<xsd:element name="SiteAddress"
type="SiteAddress_type" />

<xsd:element name="IntersectionAddress"
type="IntersectionAddress_type" minOccurs="0" />

</xsd:choice>
</xsd:complexType>

- <xsd:complexType name="GeocodedAddress_type">
- <xsd:annotation>

<xsd:documentation xml:lang="en">This is a candidate
matched to the client's requested
address.</xsd:documentation>

</xsd:annotation>
- <xsd:sequence>

<xsd:element name="Address" type="Address_type"
minOccurs="1" maxOccurs="1" />

<xsd:element ref="gml:Point" minOccurs="1"
maxOccurs="1" />

<xsd:element name="GeocodeMatchCode"
type="GeocodeMatchCode_type" minOccurs="1"
maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

- <xsd:complexType name="GeocodeResponseList_type">
- <xsd:annotation>

<xsd:documentation xml:lang="en">This is the list of
candidates matched to the requested address. The
numberOfGeocodedAddresses attribute enumerates
the number of items on the list</xsd:documentation>

</xsd:annotation>
- <xsd:sequence>

<xsd:element name="GeocodedAddress"
type="GeocodedAddress_type" maxOccurs="100" />

</xsd:sequence>
<xsd:attribute name="numberOfGeocodedAddresses"

type="ListEnumerator_type" use="required" />
</xsd:complexType>

- <xsd:complexType name="Fault_type">
- <xsd:all>



53

<xsd:element name="faultcode" type="faultcode_type" />
<xsd:element name="faultstring" type="faultstring_type"

/>
<xsd:element name="detail" type="ErrorReport_type" />

</xsd:all>
</xsd:complexType>

- <xsd:complexType name="ResponseFaultList_type">
- <xsd:annotation>

<xsd:documentation xml:lang="en">This is a list of error
reports. The numberOfFaults attribute enumerates the
number of items on the list</xsd:documentation>

</xsd:annotation>
- <xsd:sequence>

<xsd:element name="Fault" type="Fault_type"
maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attribute name="numberOfFaults"

type="ListEnumerator_type" use="required" />
</xsd:complexType>

- <xsd:complexType name="GeocodeResponse_type">
- <xsd:annotation>

<xsd:documentation xml:lang="en">The
GeocodeResponseList is empty if no addresses are
returned and absent if an error occurs before it is
generated. The RequestedAddress is absent only if an
error occurs before it is
retrieved.</xsd:documentation>

</xsd:annotation>
- <xsd:all>

<xsd:element name="RequestedAddress"
type="RequestedAddress_type" minOccurs="0" />

<xsd:element name="GeocodeResponseList"
type="GeocodeResponseList_type" minOccurs="0" />

<xsd:element name="ResponseFaultList"
type="ResponseFaultList_type" minOccurs="0" />

</xsd:all>
</xsd:complexType>

- <xsd:complexType name="ResponseType">
- <xsd:annotation>

<xsd:documentation xml:lang="en">The Response will
contain the GeocodeResponse. Other responses would
be added here.</xsd:documentation>

</xsd:annotation>
- <xsd:choice>

<xsd:element name="GeocodeResponse"
type="GeocodeResponse_type" minOccurs="0" />

</xsd:choice>
<xsd:attribute name="Version" type="GeocoderVersion_type"

use="required" />
<xsd:attribute name="RequestID" type="RequestID_type" />

</xsd:complexType>



54

</xsd:schema>


	The Geocode Service Software
	Contents

	Author
	License
	Sources
	Supported Systems
	Geocode Service: Provided Files
	geocode-dist.tar.gz

	Contents of geocode-dist.tar.gz
	gcrespond.exe

	Contents of gc_respond.exe
	Software Required, but not provided

	Compiler
	Berkeley DB
	Apache httpd
	The Fastcgi Apache Module
	mod_fastcgi From Source
	The Fastcgi Library
	INSTALLATION OF THE PROVIDED SOFTWARE

	Overview.
	Step 1. Choose a base directory for the service.
	Step 2. Choose a directory layout.
	Step 3. Create the Directories.
	Step 4. Install the Software Components.
	Installing the PAGC library from the archive.
	Installing geocode_response from the archive
	Installing pagc_build_schema from the archive
	INSTALLING THE STANDARDIZATION FILES
	INSTALLING THE PAGC SCHEMA TABLES
	Step 5 : Copy the data to the directories
	Step 6 : Build the data
	Step 7 : Configure Apache
	Step 8 : Start Apache
	How the Geocoder Works

	Initialization
	Request
	Scoring and Matching
	Candidates
	Intersection Address
	Response
	Customization of the Geocoder Software

	Geocode Service API
	GEOCODE REQUEST API

	PARAMETER_STRING
	General Request Parameters
	methodName
	Required. All requests must include a value for the methodName variable. This value describes the type of request being made. Currently accepted values are:
	methodName=GeocodeRequest
	The method GeocodeRequest is a request to take an unnormalized address and produce a normalized address bound to standard coordinates. The methodName must be a valid query method that the responder can accept. In version 1.1 the only valid methodName is GeocodeRequest. This method is a request for the latitude and longitude of an address for either (a) A site address - the address of a site on a thoroughfare identified by a number, street name, place name and/or postal code - or (b) An intersection address - the intersection of two thoroughfares identified by two street names with place name and/or zip code.
	Version
	Required. All requests must include a value for the Version. This is a decimal value stating the method Version. This will allow the requester to expect a predictable response. Currently accepted values are:
	Version=1.1
	CountryCode
	Required. All requests must include a value for the CountryCode variable.
	A string of 2 characters that gives the CountryCode for which the request is applicable. It must be present but the value is ignored in this version.
	An example is
	CountryCode=US
	.
	RequestID
	Optional All requests may include a client-assigned value for RequestID. This value, if included, must be a string not less than 1 character and not greater than 255 characters in length. An example is
	RequestID=12345ABC
	maximumResponses
	Optional All requests may include a value for the variable maximumResponses. This value, if provided, must be a positive integer not less than 1 and not greater than 30. If not given, the default of 30 is used. It controls the number of candidates returned, in the event of an imperfect match. An example of its use is
	maximumResponses=3
	ResponseFormat
	Optional All requests may include a value for the parameter ResponseFormat. Currently accepted values:
	ResponseFormat=XML
	ResponseFormat=JSON
	ResponseFormat=CSV
	Request Specific Parameters
	Site Address
	A site address is a location denoted by a locale-specific thoroughfare name and an identifier (usually numeric) that positions the location relative to the extent of the thoroughfare.
	Intersection Address
	An intersection address is the location of the intersection or junction of two thoroughfare and is denoted by the pairing of the locale-specific thoroughfare names.
	SITE ADDRESS PARAMETERS
	INTERSECTION ADDRESS PARAMETERS
	Complete Feature Address Parameters
	CompleteAddressNumber
	Required for Site Address, Forbidden for Intersection Address. This is a string that identifies an address identifier. It is sometimes called the house number or civic number. It should be a series of digits and may be preceded by a series of letters and/or followed by a series of letters. Rural route boxes (and other non-thoroughfare locators, such as latitude-longitude addresses) are not supported by this version. If no alphabetic characters are specified, it may be terminated by a fraction. It must not be present in an intersection request.
	CompleteStreetName
	Required for Site Address, Required for Intersection Address. This is an string that identifies the full name of the thoroughfare, including directionals, types and qualifiers.
	CompleteStreetName2
	Forbidden for Site Address, Required for Intersection Address. This is an string that identifies the full name of the intersecting thoroughfare, including directionals, types and qualifiers.
	CompleteOccupancyIdentifier
	Optional for Site Address, Forbidden for Intersection Address. This is a string that serves as a floor, unit or building identifier within the location identified by the CompleteAddressNumber. This version of the geocoder will accept the string but does not use it.
	Place State Zip Parameters
	PlaceName
	Optional. This is a string that identifies the municipal, town or city name in which the address is located.
	StateName
	Optional. This is a string that identifies the state, province, or national subdivision in which the place name is located.
	ZipCode
	Optional. The value for this parameter should be the USPS postal zip code for the address.
	ZipPlus4
	Optional. This 4 digit number identifies the extension to the zip code and should not be present if the zip code is absent.
	Additional Parameters
	RequestStrategy
	Optional. The default is RequestStrategy=Both - The responder first attempts to match with a precise address. If results are not satisfactory, it abandons the precise results and does an interpolated matching. If the value for this variable is RequestStrategy=Precise the responder returns only the precise results. If the value is RequestStrategy=Interpolated it returns only interpolated results.
	InterpolationOffset
	Optional. This value must be a decimal number not less than 0.00 and not greater than 100.00. It is interpreted as the number of meters to offset an interpolated address from the street. The default is 5.0. For example, to set the returned coordinates at 10 meters from the road, use InterpolationOffset=10.0.
	IntersectionRadius
	Optional. This value must be a decimal number not less than 0.00 and not greater than 100.00. It is interpreted as the maximum distance within which two points will snap together to form an intersection. It is interpreted as the radial distance from the center of an intersection such that all points. This parameter allows the user to configure for locales which have large intersections or have short distances between intersections. As a special usage, setting the variable to zero will ensure that all points within the default in an intersection are returned (rather than a single representative point). The default is 30.00 meters.
	GeocodeService API: The Response

	Format of the Response
	XML
	XML is the default format for the response. The content-type of the xml Response is text/xml. An xml schema, GeocodeResponse.xsd, specifies the form.
	JSON
	The content-type of the JSON response is application/json. The Response is a JSON object.
	CSV
	The content-type of the CSV Response is text. It will consist of newline-terminated lines of comma-delimited values. For each section that appears in the response the first line will give the element names and will be followed by one or more lines giving the corresponding values.
	The Response
	Version
	This is the interface version of the response. It should match the Version of the submitted request. The minimum value is 1.1.
	RequestID
	This returns verbatim the RequestID submitted by the sender. It will be blank if no RequestID was submitted.
	GeocodeResponse
	The value of the GeocodeResponse field is a GeocodeResponse object
	GeocodeResponse
	GeocodeResponseList
	This contains the list of geocoded match candidates. The GeocodeResponseList is empty if no addresses are returned and absent if an error occurs before it is generated. See the GeocodeResponseList object
	ResponseFaultList
	The ResponseFaultList is a list of error reports and is present only if an error occurs. See the ResponseFaultList object
	RequestedAddress
	The RequestedAddress is absent only if an error occurs before it is retrieved. See the RequestedAddress object
	ResponseFaultList
	Fault
	If the ResponseFaultList is present in the response, then there will be one or more Faults. See the Fault object. In JSON this will be an array of faults. In XML it will be a sequence of fault objects
	numberOfFaults
	In a CSV response this value will be stated in the header section. If it is zero the ResponseFaultList will not be present.
	Fault
	faultcode
	The faultcode is one of either "Client" or "Server".
	faultstring
	The faultstring for "Client" is "Bad client content" and for "Server", "Server process error". It should be noted that the expression of these two fault types is not, as it would seem, an assignation of blame.
	detail
	The detail field will give a brief diagnostic of the fault that may assist either the client or server in correcting the problem encountered. This diagnostic may be an error message generated by the responder or by a software library linked to the responder.
	GeocodeResponseList
	numberOfGeocodedAddresses
	This is the number of GeocodedAddresses that appear on the list. This is an integer value that can range from 0 to the maximum (30). In XML this is an attribute.
	GeocodedAddress
	See the GeocodedAddress object
	GeocodedAddress
	Address
	See the Address object
	gml:Point
	This is the latitude and longitude of the position. In JSON and CSV Address objects the latitude and longitude are represented in separate fields. In XML the field is named "gml:Point".
	GeocodeMatchCode
	See the GeocodeMatchCode object
	source
	See the source object
	Address
	SiteAddress
	See the SiteAddress object
	IntersectionAddress
	See the IntersectionAddress object
	GeocodeMatchCode
	accuracy
	The accuracy field will be a decimal value not less than 0.00 and not more than 1.00 and will indicate the degree of correspondence between the requested address and the normalized reference address.
	matchType
	The matchType field will contain one of the values "Precise" or "Interpolated", indicating whether the position was determined by matching a record that specified that position or whether the position was determined by matching with an arc record and calculating the ratio of its address number with the range between the starting address number and its position and the ending address number and its position.
	The note field will contain the value “P” if the returned address disagrees in parity with other addresses in its address range. This is used for “Interpolated” addresses and will be empty if  the address is not interpolated or if the parity does not disagree.
	source
	dataSource
	The dataSource field will indicate the file name or other identifier of the dataset from which the address data is taken.
	addressIdentifier
	The addressIdentifier field will indicate the identifier for the specific record from which the address data is taken. This element may be empty for Intersection responses.
	IntersectionAddress
	CompleteStreetName
	This will be a sequence of precisely two normalized CompleteStreetNames
	PlaceName
	See PlaceName.
	PlaceName_USPS
	See PlaceName_USPS.
	StateName
	See StateName.
	ZipCode
	See ZipCode.
	ZipPlus4
	See ZipPlus4.
	SiteAddress
	CompleteAddressNumber
	See CompleteAddressNumber
	CompleteStreetName
	See CompleteStreetName. This will be a normalized, parsed object in a SiteAddress response.
	CompleteOccupancyIdentifier
	See CompleteOccupancyIdentifier. This will be a normalized, parsed object in a SiteAddress response
	PlaceName
	See PlaceName.
	PlaceName_USPS
	See PlaceName_USPS.
	StateName
	See StateName.
	ZipCode
	See ZipCode.
	ZipPlus4
	See ZipPlus4.
	CompleteOccupancyIdentifier
	Unit
	This is generally an internal building subdivider
	Building
	This is a separate building identifier where a single CompleteAddressNumber identifies more than one building
	CompleteStreetName
	PreModifier
	A pre-positioned qualifier to the street name, such as Old in Old Highway 99
	PreDirectional
	A directional indicator that precedes the Street name, such as West in West 107th Street
	PreType
	This is a street type that precedes the StreetName. For example, Highway in Highway 17, or Rue in Rue Morgue.
	StreetName
	This field is always present. It is the base name for the street. This will be the official (unstandardized) name of the Street, as represented in the record.
	PostType
	The street type that follows the Street Name. For example, Street in Main Street
	PostDirectional
	A directional indicator that follows the street name, such as Northwest in 17th Avenue Northwest
	PostModifier
	A post-positioned qualifier to the street name
	RequestedAddress
	Other Address Attributes
	CompleteAddressNumber
	This is the identifier for a SiteAddress.
	PlaceName
	This is the city, town or municipal name of the area in which the address is located. This may occur in a SiteAddress, IntersectionAddress or the RequestedAddress.
	PlaceName_USPS
	This is the post office name for this address. This may occur in a SiteAddress or IntersectionAddress.
	StateName
	This is the state in which the address is located. This may occur in a SiteAddress, IntersectionAddress or the RequestedAddress.
	ZipCode
	This is the 5 digit USPS postal code for the address. This may occur in a SiteAddress, IntersectionAddress or the RequestedAddress.
	ZipPlus4
	This is the 4 digit extension to the USPS postal code. This may occur in a SiteAddress, IntersectionAddress or the RequestedAddress.
	An XSD for the Geocode Service


